Removal of Azo Dye Carmoisine by Adsorption Process on Diatomite

Author:

Labiod Kotbia12ORCID,Hazourli Sabir1,Bendaia Marwa1,Tlili Mohamed3,AitBara Adel4,Graine Radouane2,Meradi Hazem2

Affiliation:

1. Laboratory of Water Treatment and Valorization of Industrial Wastes, Chemistry Department, Faculty of Sciences, Badji-Mokhtar University, Bp12, 23000 Annaba, Algeria

2. Research Center in Industrial Technologies, CRTI, P.O. Box 64, Cheraga, 16014 Algiers, Algeria

3. Laboratory of Desalination and Natural Water Valorization-CERTE, Borj-CédriaTechnopole BP 273-8020 Soliman, Tunisia

4. Laboratory of Physical Chemistry of Materials, Department of Chemistry, Faculty of Sciences and Technology, Chadli Bendjedid University, B.P. 36, El Tarf 36000, Algeria

Abstract

This work aims to evaluate the adsorption capacity of an abundant natural diatomite (ND) to remove the azo dye carmoisine, known as a harmful emerging organic pollutant. Indeed, to the best of our knowledge, no results were reported on this subject. The ND was characterized by FTIR, XRD, and SEM/EDX analyses. The experimental study of adsorption was carried out in batch mode. Results showed that ND adsorbent is mainly composed of silica. A fraction of calcite and ankerite was also identified. It is a porous material with a specific surface of about 41 m2.g-1 and with a hydroxyl surface functional group -OH. Adsorption results showed that adsorption process on ND is found to be effective in removing the carmoisine colorant. The adsorption capacity is strongly affected by the adsorbent and adsorbate contents, the solution pH, the work temperature, and the water hardness and mineralization. At room temperature, optimal experimental conditions for the highest adsorption capacity (12 mg.g-1) were colorant concentration 50mg.L-1, pH 2, contact time 30min, and ND content 1 g.L-1. Modeling study has showed that experimental results are well modeled by the Freundlich isotherm in multilayer adsorption. The reaction kinetics are pseudo-second order, and the thermodynamic parameters indicated that the nature of the adsorption process is endothermic and spontaneous.

Funder

Algerian Ministry of Higher Education and Scientific Research

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3