Radiomics Model Based on Enhanced Gradient Level Set Segmentation Algorithm to Predict the Prognosis of Endoscopic Treatment of Sinusitis

Author:

Li Yabing1ORCID,Tao Ye2ORCID

Affiliation:

1. Department of Otolaryngology, Lujiang People’s Hospital, Lujiang 231500, China

2. School of Life Medicine, University of Science and Technology of China, Hefei, 230026 Anhui, China

Abstract

Background and objective. Nasal endoscopy is a standard method to treat sinusitis. Predicting the prognosis of nasal endoscopy can make treatment more effective. The purpose of this study is to explore the prediction of radiomics model based on an enhanced gradient level set segmentation algorithm for the effect of nasal endoscopy in the treatment of sinusitis. Methods. Computed tomography (CT) images of sinusitis in 91 patients were collected. By introducing boundary gradient information into the edge detection function, the sensitivity of the level set model to the boundary of different intensities of lesions was adjusted to obtain accurate segmentation results. After that, the segmented CT image was imported into Mazda texture analysis software for feature extraction. Three dimensionality reduction methods were used to screen the best texture features. Four analysis methods in the B11 module were used to calculate the misclassified rate (MCR). Results. The segmentation algorithm based on an enhanced gradient level set has good segmentation results for sinusitis lesions. The radiomics results show that the raw data analysis method under the Fisher dimensionality reduction method has a low MCR (25.27%). Conclusion. The enhanced gradient level set segmentation algorithm can segment sinusitis lesions accurately. The radiomics model effectively predicts the prognosis of endoscopic treatment of sinusitis.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3