N-Methyl-D-aspartate Receptor Excessive Activation Inhibited Fetal Rat Lung DevelopmentIn VivoandIn Vitro

Author:

Liao Zhengchang1,Zhou Xiaocheng2,Luo Ziqiang3,Huo Huiyi1,Wang Mingjie1,Yu Xiaohe1,Cao Chuanding1,Ding Ying1,Xiong Zeng4,Yue Shaojie1ORCID

Affiliation:

1. Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China

2. Department of Pediatrics, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China

3. Department of Physiology, Xiangya Medical School, Central South University, Changsha, Hunan 410008, China

4. Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China

Abstract

Background. Intrauterine hypoxia is a common cause of fetal growth and lung development restriction. Although N-methyl-D-aspartate receptors (NMDARs) are distributed in the postnatal lung and play a role in lung injury, little is known about NMDAR’s expression and role in fetal lung development.Methods. Real-time PCR and western blotting analysis were performed to detect NMDARs between embryonic days (E) 15.5 and E21.5 in fetal rat lungs. NMDAR antagonist MK-801’s influence on intrauterine hypoxia-induced retardation of fetal lung development was testedin vivo, and NMDA’s direct effect on fetal lung development was observed using fetal lung organ culturein vitro.Results. All seven NMDARs are expressed in fetal rat lungs. Intrauterine hypoxia upregulated NMDARs expression in fetal lungs and decreased fetal body weight, lung weight, lung-weight-to-body-weight ratio, and radial alveolar count, whereas MK-801 alleviated this damagein vivo.In vitroexperiments showed that NMDA decreased saccular circumference and area per unit and downregulated thyroid transcription factor-1 and surfactant protein-C mRNA expression.Conclusions. The excessive activation of NMDARs contributed to hypoxia-induced fetal lung development retardation and appropriate blockade of NMDAR might be a novel therapeutic strategy for minimizing the negative outcomes of prenatal hypoxia on lung development.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3