Determination of the Hydration Damage Instability Period in a Shale Borehole Wall and Its Application to a Fuling Shale Gas Reservoir in China

Author:

She Haicheng1ORCID,Hu Zaiqiang1ORCID,Qu Zhan2,Zhang Yao1,Guo Hu3ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Xi’an University of Technology, Xi’an, 710048 Shaanxi, China

2. School of Petroleum Engineering, Xi’an Shiyou University, Xi’an, 710065 Shaanxi, China

3. School of Petroleum Engineering and Environment Engineering, Yan’an University, Yan’an, 716000 Shaanxi, China

Abstract

In reviewing Chinese shale gas reserves and national policies regarding shale gas exploitation, shale gas will be of critical importance in providing clean natural gas to China. However, compared to those in the United States, the cost of shale gas extraction and the complex problems encountered in more complex and deep drilling in China are key technologies that need to be overcome. Shale wellbore wall instability is a complex problem that often occurs during drilling. During the process of drilling in shale, the complex stress and fluid-structure interactions result in the wall rock generating a strong hydration diffusion and swelling effect, which alters the stress distribution in the rock wall and deteriorates the mechanical parameters of the rock. This results in instability damage of the shale wellbore wall. In this study, the stratigraphic stress characteristics of the Fuling Shale Gas Field were initially predicted, and the shale sample phase composition and development of bedding and microcracks were analyzed using X-ray diffraction and scanning electronic microscopy. The main driving potential difference function between the drilling fluid and shale was analyzed, and a radial adsorption diffusion model of the shale plane was established. Through a laboratory study, the space time change law of the water diffusion of the shale rock was assessed as well as the rock damage evolutionary law of the elastic modulus and compressive strength with water content. Then, combined with the shale hydration stress and strength deformation theory, a damage evolutionary equation for shale with water was derived, and the shale damage evolutionary limit equation and the method of determining the collapse cycle were established. Finally, the method was applied to the Fuling Shale Gas Field, the largest shale gas field in China, and a shale wellbore collapse cycle of approximately seven days in the field was obtained. The severity of economic loss resulting from wellbore wall instability was also determined. This study provides insight and guidance for reducing the costs of shale gas reservoir well drilling and efficient development.

Funder

Yan’an University Doctor Research Initiation Funding

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3