Performances and Reliability of Bruker Microflex LT and VITEK MS MALDI-TOF Mass Spectrometry Systems for the Identification of Clinical Microorganisms

Author:

Bilecen Kivanc1ORCID,Yaman Gorkem2,Ciftci Ugur3,Laleli Yahya Rauf3

Affiliation:

1. Department of Research & Development, Duzen Laboratories Group, 06680 Ankara, Turkey

2. Department of Clinical Microbiology, Duzen Laboratories Group, 34387 Istanbul, Turkey

3. Department of Clinical Microbiology, Duzen Laboratories Group, 06680 Ankara, Turkey

Abstract

In clinical microbiology laboratories, routine microbial identification is mostly performed using culture based methodologies requiring 24 to 72 hours from culturing to identification. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) technology has been established as a cost effective, reliable, and faster alternative identification platform. In this study, we evaluated the reliability of the two available MALDI-TOF MS systems for their routine clinical level identification accuracy and efficiency in a clinical microbiology laboratory setting. A total of 1,341 routine phenotypically identified clinical bacterial and fungal isolates were selected and simultaneously analyzed using VITEK MS (bioMérieux, France) and Microflex LT (Bruker Diagnostics, Germany) MALDI-TOF MS systems. For any isolate that could not be identified with either of the systems and for any discordant result, 16S rDNA gene or ITS1/ITS2 sequencing was used. VITEK MS and Microflex LT correctly identified 1,303 (97.17%) and 1,298 (96.79%) isolates to the species level, respectively. In 114 (8.50%) isolates initial phenotypic identification was inaccurate. Both systems showed a similar identification efficiency and workflow robustness, and they were twice as more accurate compared to routine phenotypic identification in our sample pool. MALDITOF systems with their accuracy and robustness offer a good identification platform for routine clinical microbiology laboratories.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3