Affiliation:
1. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Road, Xili Nanshan, Shenzhen, Guangdong 518055, China
2. Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, 1068 Xueyuan Road, Xili Nanshan, Shenzhen, Guangdong 518055, China
3. Key Laboratory for Health Informatics of the Chinese Academy of Sciences (HICAS), 1068 Xueyuan Road, Xili Nanshan, Shenzhen, Guangdong 518055, China
4. Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong
Abstract
Heart rate variability (HRV) is a useful clinical tool for autonomic function assessment and cardiovascular diseases diagnosis. It is traditionally calculated from a dedicated medical electrocardiograph (ECG). In this paper, we demonstrate that HRV can also be extracted from photoplethysmograms (PPG) obtained by the camera of a smartphone. Sixteen HRV parameters, including time-domain, frequency-domain, and nonlinear parameters, were calculated from PPG captured by a smartphone for 30 healthy subjects and were compared with those derived from ECG. The statistical results showed that 14 parameters (AVNN, SDNN, CV, RMSSD, SDSD, TP, VLF, LF, HF, LF/HF, nLF, nHF, SD1, and SD2) from PPG were highly correlated (r>0.7,P<0.001) with those from ECG, and 7 parameters (AVNN, TP, VLF, LF, HF, nLF, and nHF) from PPG were in good agreement with those from ECG within the acceptable limits. In addition, five different algorithms to detect the characteristic points of PPG wave were also investigated: peak point (PP), valley point (VP), maximum first derivative (M1D), maximum second derivative (M2D), and tangent intersection (TI). The results showed that M2D and TI algorithms had the best performance. These results suggest that the smartphone might be used for HRV measurement.
Funder
National Basic Research Program of China
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine
Cited by
120 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献