Insulin-Attenuated Inflammatory Response of Dendritic Cells in Diabetes by Regulating RAGE-PKCβ1-IRS1-NF-κB Signal Pathway: A Study on the Anti-Inflammatory Mechanism of Insulin in Diabetes

Author:

Zhao Liding12,Li Ya12,Lv Qingbo12,Wang Min12,Luan Yi12,Song Jiale12,Fu Guosheng12ORCID,Ge Junbo34,Zou Yunzeng34,Zhang Wenbin12ORCID

Affiliation:

1. Department of Cardiovascular Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, China

2. Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China

3. Shanghai Institute of Cardiovascular Diseases of Zhongshan Hospital, Fudan University, Shanghai, China

4. Institute of Biomedical Science, Fudan University, Shanghai, China

Abstract

Background. Diabetes is associated with chronic inflammation, and dendritic cells (DCs) have proinflammatory effect in diabetes. The anti-inflammatory effect of insulin on diabetes is not entirely clear. The study aims to examine insulin-induced effects on the inflammatory response in DCs. Methods. Twenty-one C57BL/6 mice were divided into 3 groups. Streptozotocin was injected into the diabetic mice model. The bone marrow-derived DCs (BMDCs) were obtained from C57BL/6 mice. CD83, CD86, and type II major histocompatibility complex (MHC-II) of BMDCs were measured by flow cytometry. The fluctuations in the RNA levels of cytokines and chemokines were analyzed by quantitative RT-PCR. The concentrations of IFN-γ and TNF-α were calculated using ELISA kits, and the proteins were detected using western blot. Results. In CD11c+ DCs derived from the spleens with hyperglycemia, the expression of CD83 and CD86 in diabetic mice was significantly upregulated, coupled with a higher secretion level of cytokines and chemokines, and increased phosphorylation of NF-κB and IκB. Insulin therapy was found to have a reversal effect on the inflammatory response and immune maturation in DCs. In AGEs-BSA-stimulated BMDCs, insulin repressed the immune maturation and downregulated the expression of RAGE, phospho-PKCβ1, and serine phospho-IRS1 in an adose-dependent manner. Such effects can be abolished by PMA, but not IR-neutralizing antibody. AGEs-BSA-induced BMDCs immune maturation was inhibited by the neutralizing antibody of RAGE, the PKCβ1 inhibitor, or the IRS1 siRNA. Conclusions. Insulin has the capability of attenuating the inflammatory response of DCs in diabetes, partly through the downregulation of RAGE expression followed by the inhibition of PKCβ1 phosphorylation and IRS1 serine phosphorylation, resulting in the inactivation of IR binding-independent NF-κB. This might partly explain the antiatherogenic effect of insulin on diabetes.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3