A Network Selection Strategy Based on Joint Optimization of User Satisfaction and Transmission Efficiency in Internet of Vehicle

Author:

Liu Xinyi12,Pang Jilong12,Wang Wei12ORCID,Meng Yun12,Hou Jun12

Affiliation:

1. School of Information Engineering, Chang’an University, Xi’an 710064, Shaanxi, China

2. The Joint Laboratory for Internet of Vehicles, Ministry of Education, China Mobile Communications Corporation, Chang’an University, Xi’an 710064, Shaanxi, China

Abstract

Network selection in the Internet of Vehicles has become a popular topic of research. Unlike existing algorithms for heterogeneous network environments that rarely consider user satisfaction, in this paper, we propose a network selection strategy that takes into account both user satisfaction and transmission efficiency. We employ the effective capacity concept, which describes the maximum throughput a system can achieve under a specific statistical Quality-of-Service (QoS) delay violation probability constraint. This strategy first analyzes the influence of different utility function weight coefficients, transmission power, and time delay on each network utility satisfaction function. It is evident that the weight coefficient is proportional to the value of the utility function. Within a constrained transmission power range, the rate of increase of the function gradually slows down until it approaches a fixed value. When the delay factor value is larger, the function value is smaller, which indicates that the pursuit of lower delay will sacrifice other network performance aspects. In order to determine the maximum value of each network utility satisfaction function, a convex optimization theory is introduced for the joint optimization of user satisfaction and transmission efficiency. Finally, simulation experiments carried out under three representative network environments show that the proposed strategy is efficient and reliable.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3