Tunable High-Frequency Acoustoelectric Current Oscillations in Fluorine-Doped Single-Walled Carbon Nanotubes

Author:

Sekyi-Arthur Daniel1ORCID,Mensah Samuel Yeboah2,Wi-Adu Kofi3ORCID,Dompreh Kwadwo Anokye2ORCID,Edziah Raymond2ORCID

Affiliation:

1. Department of Physics, College of Basic and Applied Sciences, University of Ghana, PMB, Accra, Ghana

2. Department of Physics, College of Agriculture and Natural Sciences, University of Cape Coast, PMB, Cape Coast, Ghana

3. Material Research Institute, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, USA

Abstract

Herein, we report on a fluorine-doped single-walled carbon nanotube (FSWCNT) phenomenon, that yields tunable high-frequency self-sustained acoustoelectric direct current (ADC) oscillations. A tractable analytical method was used in the hypersound domain, to base the calculations on carriers in the lowest miniband. Hypothetically, the energy of interaction between the carriers and the acoustic phonons is less than the energy of the typical carriers. High-order harmonics of the acoustic phonons’ effective field could be disregarded under this supposition. The ADC was observed to exhibit a nonlinearity, that resulted from the carrier distribution function’s distortion as a result of interaction with the acoustic phonons, which had strong nonlinear effects. Theoretically, we demonstrated that the dynamics of space charge instabilities, due to Bragg reflection of Bloch oscillating carriers in the FSWCNT’s miniband, were the only factors which contributed to the creation of radiation in the terahertz (THz) frequency range. The study also investigated the influence of various FSWCNT parameters such as the overlapping integrals (Δs and Δz), ac-field E1, and carrier concentration noon the behaviour of the ADC. The results showed that the intensity of the ADC oscillation Jzzae/Joae could be tuned by adjusting Δs, Δz, E1, and no.This tunability suggests that FSWCNTs could be used as an active device operating at very high frequencies, potentially reaching the submillimeter wavelength range. The study also suggests the possibility of domain suppression and acoustic Bloch gain through dynamic ADC stabilisation.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3