Genetics and Pathogenicity of Influenza A (H4N6) Virus Isolated from Wild Birds in Jiangsu Province, China, 2023

Author:

Song Xingdong1ORCID,Tian Jingman2,Li Minghui2,Bai Xiaoli2,Zhao Zhiguo2,Shi Jianzhong2,Zeng Xianying2,Tian Guobin2,Guan Yuntao2,Cui Pengfei2,Deng Guohua2,Liu Liling2,Chai Hongliang1,Li Yanbing12ORCID,Chen Hualan2ORCID

Affiliation:

1. College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang Province, China

2. State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang Province, China

Abstract

During the routine surveillance, we isolated nine H4N6 subtype avian influenza viruses (AIVs) in Jiangsu Province, China, in March 2023. Phylogenetic analysis revealed that nine H4N6 viruses belonged to the Eurasian lineage and underwent complex genetic recombination among Asian countries during their evolution. It is particularly noteworthy that the PB2 and PB1 genes of our representative virus were descended from clade 2.3.4.4b H5 high-pathogenic AIVs in Japan. Mutations of D3V and D622G in PB1, N66S in PB1-F2, N30D, I43M, and T215A in M1, and P42S and I106M in NS1 were observed in nine isolates, which may increase the pathogenicity of the viruses in mice. The receptor binding analysis showed that the tested H4N6 virus could bind to both avian-type and human-type receptors. Vitro infection kinetics revealed that the representative virus could efficiently replicate in mammalian cells, including MDCK and 293T cells. Pathogenicity tests in mice indicated that the representative virus could replicate in nasal turbinates and lungs without prior adaptation. Our data reveal the potential public health issues represented by H4N6 viruses from wild birds and highlight the need to strengthen routine surveillance of wild birds.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3