Identification of Differentially Expressed Drought-Responsive Genes in Guar [Cyamopsis tetragonoloba (L.) Taub]

Author:

Alshameri Aref1ORCID,Al-Qurainy Fahad1ORCID,Gaafar Abdel-Rhman1ORCID,Khan Salim1ORCID,Nadeem Mohammad1ORCID,Alansi Saleh1ORCID,Shaikhaldein Hassan O.1ORCID,Salih Abdalrhaman M.1ORCID

Affiliation:

1. Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

Drought remains one of the most serious environmental stresses because of the continuous reduction in soil moisture, which requires the improvement of crops with features such as drought tolerance. Guar [Cyamopsis tetragonoloba (L.) Taub], a forage and industrial crop, is a nonthirsty plant. However, the information on the transcriptome changes that occur under drought stress in guar is very limited; therefore, a gene expression analysis is necessary in this context. Here, we studied the differentially expressed genes (DEGs) in response to drought stress and their metabolic pathways. RNA-Seq via an expectation-maximization algorithm was used to estimate gene abundance. Subsequently, an Empirical Analysis of Digital Gene Expression Data in the R Bioconductor package was used to identify DEGs. Blast2GO, InterProScan, and the Kyoto Encyclopedia of Genes and Genomes were used to explore functional annotation, protein analysis, enzymes, and metabolic pathways. Transcription factors were identified using the PlantTFDB database. Our study identified 499 upregulated and 191 downregulated genes in response to drought stress. Of those, 32 upregulated and six downregulated genes were deemed as novel genes exclusive to guar. An aggregate of 137 protein families, 306 domains, 12 repeats, and two sites were upregulated. The proton-dependent oligopeptide transporter family and transferase, aquaporin transporter, calcium/calmodulin-dependent/calcium-dependent protein kinase, aspartic peptidase A1 family, UDP-glucuronosyl/UDP-glucosyltransferase, and major intrinsic protein were the most upregulated protein families. The upregulated unigenes were associated with 88 enzymes and 77 KEGG pathways. Finally, the MYB-related, MYB, and ERF transcription factor families were upregulated. These data may be useful for understanding the plant molecular response to drought stress.

Publisher

Hindawi Limited

Subject

Pharmaceutical Science,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3