Design of Nanoparticle-Based Carriers for Targeted Drug Delivery

Author:

Yu Xiaojiao1,Trase Ian1,Ren Muqing2,Duval Kayla1,Guo Xing1,Chen Zi1

Affiliation:

1. Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA

2. Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

Abstract

Nanoparticles have shown promise as both drug delivery vehicles and direct antitumor systems, but they must be properly designed in order to maximize efficacy. Computational modeling is often used both to design new nanoparticles and to better understand existing ones. Modeled processes include the release of drugs at the tumor site and the physical interaction between the nanoparticle and cancer cells. In this paper, we provide an overview of three different targeted drug delivery methods (passive targeting, active targeting, and physical targeting) and compare methods of action, advantages, limitations, and the current stages of research. For the most commonly used nanoparticle carriers, fabrication methods are also reviewed. This is followed by a review of computational simulations and models on nanoparticle-based drug delivery.

Funder

National Institutes of Health

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 234 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3