Development and Validation of a Risk Prediction Model for Ventricular Arrhythmia in Elderly Patients with Coronary Heart Disease

Author:

Dong Ying1ORCID,Shi Yajun1,Wang Jinli1,Dan Qing1,Gao Ling1,Zhao Chenghui1,Mu Yang1,Liu Miao2,Yin Chengliang345,Wu Rilige4,Liu Yuqi1,Li Yang1ORCID,Wang Xueping1ORCID

Affiliation:

1. Department of Cardiology, First Medical Center of Chinese PLA General Hospital, Beijing, China

2. Graduate School of Chinese PLA General Hospital, Beijing, China

3. National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China

4. Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China

5. Faculty of Medicine, Macau University of Science and Technology, Macau, China

Abstract

Background. Sudden cardiac death is a leading cause of death from coronary heart disease (CHD). The risk of sudden cardiac death (SCD) increases with age, and sudden arrhythmic death remains a major cause of mortality in elderly individuals, especially ventricular arrhythmias (VA). We developed a risk prediction model by combining ECG and other clinical noninvasive indexes including biomarkers and echocardiology for VA in elderly patients with CHD. Method. In the retrospective study, a total of 2231 consecutive elderly patients (≥60 years old) with CHD hospitalized were investigated, and finally 1983 patients were enrolled as the model group. The occurrence of VA within 12 months was mainly collected. Study parameters included clinical characteristics (age, gender, height, weight, BMI, and past medical history), ECG indexes (QTcd, Tp-e/QT, and HRV indexes), biomarker indexes (NT-proBNP, Myo, cTnT, CK-MB, CRP, K+, and Ca2+), and echocardiology indexes. In the respective study, 406 elderly patients (≥60 years old) with CHD were included as the verification group to verify the model in terms of differentiation and calibration. Results. In the multiparameter model, seven independent predictors were selected: LVEF, LAV, HLP, QTcd, sex, Tp-e/QT, and age. Increased HLP, Tp-e/QT, QTcd, age, and LAV were risk factors (RR > 1), while female and increased LVEF were protective factors (RR < 1). This model can well predict the occurrence of VA in elderly patients with CHD (for model group, AUC: 0.721, 95% CI: 0.669∼0.772; for verification group, AUC: 0.73, 95% CI: 0.648∼0.818; Hosmer–Lemeshow χ 2  = 13.541, P = 0.095 ). After adjusting the predictors, it was found that the combination of clinical indexes and ECG indexes could predict VA more efficiently than using clinical indexes alone. Conclusions. LVEF, LAV, QTcd, Tp-e/QT, gender, age, and HLP were independent predictors of VA risk in elderly patients with CHD. Among these factors, the echocardiology indexes LVEF and LAV had the greatest influence on the predictive efficiency of the model, followed by ECG indexes, QTcd and Tp-e/QT. After verification, the model had a good degree of differentiation and calibration, which can provide a certain reference for clinical prediction of the VA occurrence in elderly patients with CHD.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3