A Bayesian Best-Worst Method-Based Multicriteria Competence Analysis of Crowdsourcing Delivery Personnel

Author:

Li Longxiao12ORCID,Wang Xu1ORCID,Rezaei Jafar2ORCID

Affiliation:

1. College of Mechanical Engineering, Chongqing University, Chongqing 400030, China

2. Faculty of Technology, Policy and Management, Delft University of Technology, Delft 2628 BX, Netherlands

Abstract

Crowdsourcing delivery is becoming a prevalent tool for tackling delivery problems by building a large labor-intensive service network. In this network, the delivery personnel consist of a large number of people with a complex composition and high level of mobility, creating enormous challenges for the quality of service and the management of a crowdsourcing platform. Hence, we attempt to conduct a competence analysis to determine whether they can provide promised services with high quality, i.e., they are competent for their job. To this end, the competence theory is introduced, and a multicriteria competence analysis (MCCA) approach is developed. To illustrate the MCCA approach, a real-world case study is conducted involving a Chinese takeaway delivery platform, where the Bayesian best-worst method is used to determine the weights of the criteria based on the data collected from managers of the platform company. Also, the competence scores of the personnel involved are collected through surveys and data sources of the company. Given the weights and the competence scores, we use additive value function to identify the overall competence scores of them, which reflects the level of competence for their job. The results show that Skills is the most important competence, while Knowledge is the least important of the four competence dimensions. In subcriteria, four core elements are identified such as punctuality, customer service awareness, responsible, and goods intact. In addition to the importance of criteria, a ranking of a sample of personnel is provided, and almost half of the crowdsourcing delivery personnel’s competence is below the average and vary significantly, while the relationship between the competence level and some other variables is also discussed. Moreover, the developed MCCA approach in this paper can be applied to analyze the competence of personnel in many other industries as well.

Funder

China Scholarship Council

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3