Ocean Wave Information Retrieval Using Simulated Compact Polarized SAR from Radarsat-2

Author:

Wang Xiaochen123ORCID,Shao Yun1234ORCID,She Lu23ORCID,Tian Wei123,Li Kun123,Liu Long123

Affiliation:

1. Laboratory of Target Microwave Properties, Deqing Academy of Satellite Applications, Huzhou 313200, China

2. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 1 Beichen Road, Beijing 100101, China

3. University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China

4. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 1 Beichen Road, Beijing 100101, China

Abstract

The main objective of this paper is to demonstrate the capability of compact polarized (CP) synthetic aperture radar (SAR) to retrieve ocean wave field parameters. Souyris’ and Nord’s algorithms are used to carry out the reconstruction of CP SAR pseudo quad-polarized data for the ocean surface under both the circular transmit linear receive (CTLR) and π/4 mode. The results show that, for the CP reconstruction, Nord’s algorithm has a better convergence ability than Souyris’. In addition, the investigation of the reconstruction accuracy shows that the CTLR mode is superior to the π/4 mode, in terms of ocean surface reconstruction. It is, therefore, concluded that the reconstructed parameters of CP CTLR mode data by Nord’s algorithm adapt to retrieve ocean wave information. The ocean wave slope spectrum and other main wave parameters are also calculated from reconstructed CP data and compared with measurements from in situ National Data Buoy Center (NDBC) matched-up buoys. Comparison of CP SAR-based wave field information with buoy outputs also shows good agreement in the case of dominate wave height, wave direction, and wave period, with biases of 0.36 m, 17.96°, and 0.88 s, respectively.

Funder

Chinese Academy of Sciences

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3