Affiliation:
1. Department of Chemical Engineering and Data Storage Systems Center, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2. School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-330, Republic of Korea
Abstract
The challenges in designing future head disk interface (HDI) demand efficient theoretical modeling tools with flexibility in investigating various combinations of perfluoropolyether (PFPE) and carbon overcoat (COC) materials. For broad range of time and length scales, we developed multiscale/multiphysical modeling approach, which can bring paradigm-shifting improvements in advanced HDI design. In this paper, we introduce our multiscale modeling methodology with an effective strategic framework for the HDI system. Our multiscale methodology in this paper adopts a bottom to top approach beginning with the high-resolution modeling, which describes the intramolecular/intermolecular PFPE-COC degrees of freedom governing the functional oligomeric molecular conformations on the carbon surfaces. By introducing methodology for integrating atomistic/molecular/mesoscale levels via coarse-graining procedures, we investigated static and dynamic properties of PFPE-COC combinations with various molecular architectures. By bridging the atomistic and molecular scales, we are able to systematically incorporate first-principle physics into molecular models, thereby demonstrating a pathway for designing materials based on molecular architecture. We also discussed future materials (e.g., graphene for COC, star-like PFPEs) and systems (e.g., heat-assisted magnetic recording (HAMR)) with higher scale modeling methodology, which enables the incorporation of molecular/mesoscale information into the continuum scale models.
Subject
Surfaces, Coatings and Films,Mechanical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献