RIP3 Contributes to Cardiac Hypertrophy by Influencing MLKL-Mediated Calcium Influx

Author:

Xue Honghong12,Shi Hongtao1,Zhang Fan12,Li Hao1,Li Chao12,Han Qinghua1ORCID

Affiliation:

1. Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China

2. Shanxi Medical University, Taiyuan, Shanxi 030001, China

Abstract

Receptor-interacting protein 3(RIP3), a RIP family member, has been reported as a critical regulator of necroptosis and involves in the pathogenesis of various heart diseases. However, its role in the development of myocardial hypertrophy after pressure overload is unclear. We aimed to investigate the roles of RIP3 in pathological cardiac hypertrophy. A rat model of myocardial hypertrophy induced by the aortic banding method was used in this study. Neonatal rat cardiomyocytes (NRCMs) were stimulated with angiotensin II (Ang-II) or phenylephrine (PE) to induce neurohumoral stress. Our results showed that RIP3 level was significantly elevated in the hypertrophic myocardium tissues from patients, rats subjected to AB surgery, and NRCMs treated with Ang-II or PE. After downregulation of RIP3 expression in NRCMs, the phenotypes of myocardial hypertrophy were obviously alleviated. In mechanism, we demonstrated that RIP3 interacts with mixed lineage kinase domain-like protein (MLKL) and promotes its cell membrane localization to increase the influx of calcium within cells, thereby mediating the development of myocardial hypertrophy. More interestingly, we found the blockage of calcium influx by 2-aminoethoxydiphenyl borate, and lanthanum chloride efficiently reverses RIP3-induced cardiac remodeling in NRCMs. Taken together, our findings indicate a key role of the RIP3-MLKL signaling pathway in myocardial hypertrophy, which may be a novel promising treatment strategy for myocardial hypertrophy.

Funder

Shanxi Provincial Health Commission

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3