Affiliation:
1. School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Beijing 100876, China
2. Naval Research Institute of PLA, Beijing 102442, China
Abstract
Network anomalies can seriously influence the performance of networks and cause huge financial losses. Existing studies modeled the round-trip time (RTT) time series of each link and identified their abnormal patterns independently to detect the network anomalies. However, they rarely investigated the correlation among links, and they rarely considered the goodness of fit and complexity in model selection, which led to low timeliness and accuracy of detection. They failed to understand the impact of network anomalies. In this work, we propose the RTS detection approach to address these challenges. Specifically, we, firstly, propose a link clustering method to cluster the links into different classes based on the topological location of pairwise links and the similarity between their RTT time series. Then, for each class of links, we consider the goodness of fit and complexity in model selection and select the suitable model to analyze their RTT time series. Finally, we propose a detection method to detect the network anomalies by observing the deviation between the probability density distribution of the current RTT values and the reference value. We perform experiments with data from public measurement infrastructures like RIPE Atlas to evaluate the performance of our approach. The results show that our approach can not only reduce the detection time and improve the accuracy of detection effectively but also can roughly evaluate the impact of network anomalies.
Funder
National Basic Research Program of China
Subject
Computer Networks and Communications,Information Systems
Reference40 articles.
1. Persistent Last-mile Congestion
2. Detecting routing loops in the data plane
3. Swift
4. Amazon Found Every 100ms of Latency Cost Them;Y. Einav,2019
5. Swift: “make data useful”;G. Linden,2006
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献