On the Modeling of RTT Time Series for Network Anomaly Detection

Author:

Kuang Ye1ORCID,Li Dandan1,Huang Xiaohong1ORCID,Zhou Mo2

Affiliation:

1. School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Naval Research Institute of PLA, Beijing 102442, China

Abstract

Network anomalies can seriously influence the performance of networks and cause huge financial losses. Existing studies modeled the round-trip time (RTT) time series of each link and identified their abnormal patterns independently to detect the network anomalies. However, they rarely investigated the correlation among links, and they rarely considered the goodness of fit and complexity in model selection, which led to low timeliness and accuracy of detection. They failed to understand the impact of network anomalies. In this work, we propose the RTS detection approach to address these challenges. Specifically, we, firstly, propose a link clustering method to cluster the links into different classes based on the topological location of pairwise links and the similarity between their RTT time series. Then, for each class of links, we consider the goodness of fit and complexity in model selection and select the suitable model to analyze their RTT time series. Finally, we propose a detection method to detect the network anomalies by observing the deviation between the probability density distribution of the current RTT values and the reference value. We perform experiments with data from public measurement infrastructures like RIPE Atlas to evaluate the performance of our approach. The results show that our approach can not only reduce the detection time and improve the accuracy of detection effectively but also can roughly evaluate the impact of network anomalies.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference40 articles.

1. Persistent Last-mile Congestion

2. Detecting routing loops in the data plane

3. Swift

4. Amazon Found Every 100ms of Latency Cost Them;Y. Einav,2019

5. Swift: “make data useful”;G. Linden,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retracted: On the Modeling of RTT Time Series for Network Anomaly Detection;Security and Communication Networks;2024-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3