3D Reconstruction of Pedestrian Trajectory with Moving Direction Learning and Optimal Gait Recognition

Author:

Wang Binbin12,Su Tingli12ORCID,Jin Xuebo12ORCID,Kong Jianlei12,Bai Yuting3

Affiliation:

1. School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China

2. Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, Beijing 100048, China

3. School of Automation, Beijing Institute of Technology, Beijing 100081, China

Abstract

An inertial measurement unit-based pedestrian navigation system that relies on the intelligent learning algorithm is useful for various applications, especially under some severe conditions, such as the tracking of firefighters and miners. Due to the complexity of the indoor environment, signal occlusion problems could lead to the failure of certain positioning methods. In complex environments, such as those involving fire rescue and emergency rescue, the barometric altimeter fails because of the influence of air pressure and temperature. This paper used an optimal gait recognition algorithm to improve the accuracy of gait detection. Then a learning-based moving direction determination method was proposed. With the Kalman filter and a zero-velocity update algorithm, different gaits could be accurately recognized, such as going upstairs, downstairs, and walking flat. According to the recognition results, the position change in the vertical direction could be reasonably corrected. The obtained 3D trajectory involving both horizontal and vertical movements has shown that the accuracy is significantly improved in practical complex environments.

Funder

Beijing Municipal Natural Science Foundation

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3