Cause Analysis on Eastward Movement of Southwest China Vortex and Its Induced Heavy Rainfall in South China

Author:

Chen Yongren12,Li Yueqing1,Zhao Tianliang3

Affiliation:

1. Institute of Plateau Meteorology, CMA, Chengdu, Sichuan 610072, China

2. Sichuan Provincial Meteorological Observatory, Chengdu, Sichuan 610072, China

3. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

The movement of southwest China vortex (SWV) and its heavy rainfall process in South China had been investigated during June 11–14, 2008. The results show that under the steering of upper-level jet (ULJ) and mid-level westerly trough, SWV moved eastward from southern Sichuan Plateau, across eastern Yunnan-Guizhou Plateau to South China, forming an obvious heavy rain belt. SWV developed in the large storm-relative helicity (SRH) environment, as environmental wind field continuously transferred positive vorticity to it to support its development. The thermodynamic structures of distinctive warm (cold) advections in front (rear) of the SWV movement are also important factors for the SWV evolutions with a southwest low-level jet (LLJ) and vertical wind shear. SWV development was associated with the distributions of negative MPV1 (the barotropic item of moist potential vorticity) and positive MPV2 (the baroclinic item of it). The MPV1 and MPV2 played the dominant role in the formation and the evolution of SWV, respectively. The mesoscale convective systems (MCSs) frequently occurred and persisted in water vapor convergence areas causing the severe heavy rainfall. The areas of high moist helicity divergence and heavy rainfall are consistent, and the moist helicity divergence could be a good indicator for heavy rainfall occurrence.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3