On Sequences of Numbers and Polynomials Defined by Linear Recurrence Relations of Order 2

Author:

He Tian-Xiao1ORCID,Shiue Peter J.-S.2

Affiliation:

1. Department of Mathematics and Computer Science, Illinois Wesleyan University, Bloomington, IL 61702, USA

2. Department of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA

Abstract

Here we present a new method to construct the explicit formula of a sequence of numbers and polynomials generated by a linear recurrence relation of order 2. The applications of the method to the Fibonacci and Lucas numbers, Chebyshev polynomials, the generalized Gegenbauer-Humbert polynomials are also discussed. The derived idea provides a general method to construct identities of number or polynomial sequences defined by linear recurrence relations. The applications using the method to solve some algebraic and ordinary differential equations are presented.

Publisher

Hindawi Limited

Subject

Mathematics (miscellaneous)

Reference23 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalized Tribonacci Polynomials;Earthline Journal of Mathematical Sciences;2023-05-10

2. On Generalized Fibonacci Polynomials: Horadam Polynomials;Earthline Journal of Mathematical Sciences;2022-09-09

3. On a class of generalized Humbert-Hermite polynomials via generalized Fibonacci polynomials;Turkish Journal of Mathematics;2022-01-01

4. Some identities of Gaussian binomial coefficients;Annales Mathematicae et Informaticae;2022

5. Identities for linear recursive sequences of order $ 2 $;Electronic Research Archive;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3