Quantitative Assessment of Gaseous Effluents during Routine Operation: A Comparative Study of Planned Nuclear Power Plants at Lubiatowo-Kopalino and Pątnów Sites in Poland

Author:

Macieja Edyta Agata1ORCID,Kim Juyoul1ORCID

Affiliation:

1. Department of Nuclear Power Plant Engineering, KEPCO International Nuclear Graduate School, 658-91 Haemaji-ro, Seosaeng-myeon, Ulju-gun, Ulsan 45014, Republic of Korea

Abstract

On September 2021, Polish government declared that six pressurized water reactors with combined capacity of 6–9 GWe will be built by 2040 to reduce Poland’s reliance on coal. Due to the adopted schedule, construction of the first nuclear power plant will begin in 2026, with the first reactor capacity of 1–1.6 GWe to be operational in 2033. The Polish authorities announced in 2022 the selection of two locations and technologies for Poland’s first commercial nuclear power plants. Westinghouse AP1000 reactor was selected by Polish government to be built as the first plant in the location of Lubiatowo-Kopalino, on the coast of the country. In the meantime, Poland’s ZE PAK, Polska Grupa Energetyczna, and Korea Hydro & Nuclear Power have signed the letter of intent to collaborate on the project that evaluates the feasibility of building South Korean APR1400 on Pątnów site in central Poland. The objective of this study was to acquire and examine the gaseous effluents released during the standard operation of the AP1000 and APR1400 reactor technologies, with the primary goal of focusing on estimating the potential exposure of the general public. The effluents were calculated by using the GALE code based on each nuclear reactor technical specification. The obtained results were compared with those included in the Design Control Document for each reactor. Subsequently, the HotSpot software was used to calculate the radiation risk for downwind areas by utilizing GALE code results as source terms together with specific meteorological data corresponding for each localization. The results for AP1000 at Lubiatowo-Kopalino site and for APR1400 at Pątnów site were analysed and compared in the study. As the study findings were evaluated with the Polish radiation limits for the general public, all doses remained below the legal thresholds. With no previous alike studies conducted, this research begins the analysis of radiation impacts associated with the planned nuclear power plant in Poland during normal operation.

Funder

KEPCO International Nuclear Graduate School

Publisher

Hindawi Limited

Reference21 articles.

1. Energy and climate—elements of the final compromise brussels;Council of the European Union,2008

2. Communication from the commission to the european parliament, the council, the european economic and social committee and the committee of the regions, stepping up europe’s 2030 climate ambition;European Commission,2021

3. Polish nuclear power programme;Ministry of Climate,2020

4. Energy policy of poland until 2040 (epp2040);Ministry of Climate and Environment Republic of Poland,2021

5. Resolution of the council of ministers on the construction of large-scale nuclear power plants in the republic of poland;sejm,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3