Fuzzy-Based Trust Prediction Model for Routing in WSNs

Author:

Anita X.1,Bhagyaveni M. A.1,Manickam J. Martin Leo2

Affiliation:

1. Department of ECE, Anna University, Chennai 600025, India

2. Department of ECE, St. Joseph’s College of Engineering, Chennai 600119, India

Abstract

The cooperative nature of multihop wireless sensor networks (WSNs) makes it vulnerable to varied types of attacks. The sensitive application environments and resource constraints of WSNs mandate the requirement of lightweight security scheme. The earlier security solutions were based on historical behavior of neighbor but the security can be enhanced by predicting the future behavior of the nodes in the network. In this paper, we proposed a fuzzy-based trust prediction model for routing (FTPR) in WSNs with minimal overhead in regard to memory and energy consumption. FTPR incorporates a trust prediction model that predicts the future behavior of the neighbor based on the historical behavior, fluctuations in trust value over a period of time, and recommendation inconsistency. In order to reduce the control overhead, FTPR received recommendations from a subset of neighbors who had maximum number of interactions with the requestor. Theoretical analysis and simulation results of FTPR protocol demonstrate higher packet delivery ratio, higher network lifetime, lower end-to-end delay, and lower memory and energy consumption than the traditional and existing trust-based routing schemes.

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trust Management: A Cooperative Approach Using Game Theory;The Psychology of Trust;2023-01-18

2. A dual synchronization prediction-based data aggregation model for an event monitoring IoT network;Journal of Intelligent & Fuzzy Systems;2022-03-04

3. Trust Management in the World of Cloud Computing. Past Trends and Some New Directions;Scalable Computing: Practice and Experience;2021-12-12

4. Trust Models in IoT-enabled WSN: A review;International Conference on Data Science, E-learning and Information Systems 2021;2021-04-05

5. A Hybrid Approach to Trust Node Assessment and Management for VANETs Cooperative Data Communication: Historical Interaction Perspective;IEEE Transactions on Intelligent Transportation Systems;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3