Multifeatured Image Retrieval Techniques Based on Partial Differential Equations for Online Shopping

Author:

Yu Jiaohui1ORCID

Affiliation:

1. School of Business, Shandong Jianzhu University, Jinan, 250101 Shandong, China

Abstract

In today’s rapid development of network and multimedia technology, the booming of electronic commerce, users in the network shopping species of images and other multimedia information showing geometric growth, in the face of this situation, how to find the images they need in the vast amount of online shopping images has become an urgent problem to solve. This paper is based on the partial differential equation to do the following research: Based on the partial differential equation is a kind of equation that simulates the human visual perception system to analyze images; based on the summary of the advantages and disadvantages of multifeature image retrieval technology, we propose a multifeature image retrieval technology method based on the partial differential equation to alleviate the indexing imbalance caused by the mismatch of multifeature image retrieval technology distribution. To improve the search speed of the data-dependent locally sensitive hashing algorithm, we propose a query pruning algorithm compatible with the proposed partial differential equation-based multifeature image retrieval technology method, which greatly improves the retrieval speed while ensuring the retrieval accuracy; to implement the data-dependent partial differential equation algorithm, we need to distribute the data set among different operation nodes, and to better achieve better parallelization of operations, we need to measure the similarity between categories, and we achieve the problem of distributing data among various categories in each operation node by introducing a clustering method with constraints. The purpose of this article for image recognition is for better shopping platforms for merchants. This algorithm has trained multiple samples and has data support. The experimental results show that our proposed data set allocation method shows significant advantages over the data set allocation method that does not consider category correlation. However, the image features used in image retrieval systems are often hundreds or even thousands of dimensions, and these features are not only high in dimensionality but also huge in number, which makes image retrieval systems encounter an inevitable problem—“dimensionality disaster.” To overcome this problem, scholars have proposed a series of approximate nearest neighbor methods, but multifeature image retrieval techniques based on partial differential equations are more widely used in people’s daily life.

Funder

Shandong Jianzhu University

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3