Study on the Potential Mechanism of Semen Strychni against Myasthenia Gravis Based on Network Pharmacology and Molecular Docking with Experimental Verification

Author:

Fang Pingfei12ORCID,Yu Changwei12,Liu Jian12,Deng Gongying12,Zhang Min12ORCID

Affiliation:

1. Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China

2. Institute of Clinical Pharmacy, Central South University, Changsha 410011, China

Abstract

Background. Semen Strychni (SS) is an effective Chinese medicine formula for treating myasthenia gravis (MG) in clinics. Nonetheless, its molecular mechanism is largely unknown. Objective. Using network pharmacology, molecular docking, and experimental validation, we aim to identify the therapeutic effect of SS on MG and its underlying mechanism. Methods. The main ingredients of SS and their targets and potential disease targets for MG were extracted from public databases. The protein-protein interaction (PPI) network was constructed using the STRING 11.0 database, and Cytoscape was used to identify the hub targets. In addition, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to identify molecular biological processes and signaling pathways. Then, AutoDock Via conducted molecular docking. The experimental autoimmune myasthenia gravis (EAMG) model in female Lewis rats, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, and enzyme-linked immunosorbent assay (ELISA) were performed to confirm the effect and mechanism of SS on MG. Results. The following active compounds and hub targets were identified by screening and analyzing: isobrucine, vomicine, (S)-stylopine, strychnine, brucine-N-oxide, brucine and AKT1, MAPK1, MAPK14, CHRM1, ACHE, and CHRNA4. KEGG enrichment analyses indicated that the cholinergic synapse and neuroactive ligand-receptor interaction signaling pathway may be necessary. The results of molecular docking revealed that the main active ingredients bind well to the hub targets. In vivo experiments proved that SS could improve the weight loss and Lennon scores in the EAMG model. Experiments in molecular biology showed that SS could treat MG by affecting the cholinergic synapse through the respective antibody, receptor, and key enzymes in the cholinergic pathway. Conclusion. This study provided a preliminary overview of the active constituents, primary targets, and potential pathways of SS against MG. SS ameliorated EAMG by regulating the cholinergic synaptic junction.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3