Motion Measurement and Analysis of Different Instruments for Single-Incision Laparoscopic Surgery

Author:

Lyu Kunyong1,Yang Lixiao2,Song Chengli3ORCID

Affiliation:

1. School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China

2. Equipment Department, Shanghai Changhai Hospital, Shanghai 200433, China

3. Shanghai Institute for Minimally Invasive Therapy, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Abstract

Objective. To objectively compare and analyze the range of motion of three types of instruments for single-incision laparoscopic surgery. Material and Methods. Ten experienced participants were recruited. Straight instruments (Group A), straight/articulating instruments (Group B), and precurved instruments (Group C) were used to complete the transferring task through one site in a laparoscopic simulator. Straight instruments via two separate sites (Group D) served as control. The operation time of each group was recorded. Instrument positions were measured by an optical tracking system. The inserted length and pivoting angles were derived via MATLAB. Results. There was a significant difference in operation time between groups ( D < A < B < C , p < 0.01 ). The range of motion of instruments was different on instrument types and surgical approaches. A significant difference in the inserted length was found between groups. Instrument conflicts and inadequate triangulation were found in Group A; instrument conflicts were found in Group B; no obvious conflicts and triangulation problems were observed in Group C. The operation in Group C was similar to the operation in Group D but differed on the left/right pivoting angles. Conclusion. Different types of instruments have different ranges of motion in single-incision laparoscopic surgery. Working with precurved instruments seems like a compromise to traditional laparoscopic surgery if the transmission property, and shaft curvature of the instruments could be improved. An integrated mechanical platform or robotic system might be the ultimate solution for single-incision laparoscopic surgery to pursue even less trauma.

Funder

Second Military Medical University

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3