An Improved Discrete Artificial Bee Colony Algorithm for Flexible Flowshop Scheduling with Step Deteriorating Jobs and Sequence-Dependent Setup Times

Author:

Xuan Hua1ORCID,Zhang Huixian1ORCID,Li Bing1ORCID

Affiliation:

1. School of Management Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China

Abstract

This paper studies a flexible flowshop scheduling problem with step-deteriorating jobs and sequence-dependent setup times (FFSP-SDJ&SDST) where there are multiple unrelated parallel machines at each stage. The actual processing time of each job is modeled as a step function of its starting time. An integer programming model is first formulated with the objective of minimizing the total weighted completion time. Since this problem is NP-complete, it becomes an interesting and challenging topic to develop effective approximation algorithms for solving it. The artificial bee colony (ABC) algorithm has been successfully applied to solve both continuous and combinatorial optimization problems with the advantages of fewer control parameters and ease of implementation. So, an improved discrete artificial bee colony algorithm is proposed. In this algorithm, a dynamic generation mechanism of initial solutions is designed based on job permutation encoding. A genetic algorithm and a modified variable neighborhood search are introduced, respectively, to obtain new solutions for the employed and onlooker bees. A greedy heuristic is proposed to generate the solutions of the scout bees. Finally, to verify the performance of the proposed algorithm, an orthogonal test is performed to optimize the parameter settings. Simulation results on different scale problems demonstrate that the proposed algorithm is more effective compared against several presented algorithms from the existing literatures.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3