Building an Effective Intrusion Detection System by Using Hybrid Data Optimization Based on Machine Learning Algorithms

Author:

Ren Jiadong1,Guo Jiawei1,Qian Wang1ORCID,Yuan Huang2ORCID,Hao Xiaobing1ORCID,Jingjing Hu3

Affiliation:

1. Computer Virtual Technology and System Integration Laboratory of Hebei Province, College of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei, 066000, China

2. Hebei University of Engineering, School of Information & Electrical Engineering, Hebei Handan, 056038, China

3. Beijing Key Laboratory of Software Security Engineering Technique, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China

Abstract

Intrusion detection system (IDS) can effectively identify anomaly behaviors in the network; however, it still has low detection rate and high false alarm rate especially for anomalies with fewer records. In this paper, we propose an effective IDS by using hybrid data optimization which consists of two parts: data sampling and feature selection, called DO_IDS. In data sampling, the Isolation Forest (iForest) is used to eliminate outliers, genetic algorithm (GA) to optimize the sampling ratio, and the Random Forest (RF) classifier as the evaluation criteria to obtain the optimal training dataset. In feature selection, GA and RF are used again to obtain the optimal feature subset. Finally, an intrusion detection system based on RF is built using the optimal training dataset obtained by data sampling and the features selected by feature selection. The experiment will be carried out on the UNSW-NB15 dataset. Compared with other algorithms, the model has obvious advantages in detecting rare anomaly behaviors.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3