Affiliation:
1. Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
2. Institute of Space Science (ANGKASA), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
Abstract
A low profile, compact dual band slotted patch antenna has been designed using finite element method-based high frequency full-wave electromagnetic simulator. The proposed antenna fabricated using LPKF printed circuit board (PCB) fabrication machine on fiberglass reinforced epoxy polymer resin material substrate and the performance of the prototype has been measured in a standard far-field anechoic measurement chamber. The measured impedance bandwidths of (reflection coefficient<-10 dB) 12.26% (14.3–16.2 GHZ), 8.24% (17.4–18.9 GHz), and 3.08% (19.2–19.8) have been achieved through the proposed antenna prototype. 5.9 dBi, 3.37 dBi, and 3.32 dBi peak gains have been measured and simulated radiation efficiencies of 80.3%, 81.9%, and 82.5% have been achieved at three resonant frequencies of 15.15 GHz, 18.2 GHz, and 19.5 GHz, respectively. Minimum gain variation, symmetric, and almost steady measured radiation pattern shows that the proposed antenna is suitable for Ku and K band satellite applications.
Subject
Electrical and Electronic Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献