Affiliation:
1. Faculty of Computing and Information Technology, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
Abstract
Along with the continuing evolution of the Internet and its applications, Content Delivery Networks (CDNs) have become a hot topic with both opportunities and challenges. CDNs were mainly proposed to solve content availability and download time issues by delivering content through edge cache servers deployed around the world. In our previous work, we presented a novel CDN architecture based on a Fog computing environment as a promising solution for real-time applications. In such architecture, we proposed to use a name-based routing protocol following the Information Centric Networking (ICN) approach, with a popularity-based caching strategy to guarantee overall delivery performance. To validate our design principle, we have implemented the proposed Fog-based CDN architecture with its major protocol components and evaluated its performance, as shown through this article. On the one hand, we have extended the Optimized Link-State Routing (OLSR) protocol to be content aware (CA-OLSR), i.e., so that it uses content names as routing labels. Then, we have integrated CA-OLSR with the popularity-based caching strategy, which caches only the most popular content (MPC). On the other hand, we have considered two similar architectures for conducting performance comparative studies. The first is pure Fog-based CDN implemented by the original OLSR (IP-based routing) protocol along with the default caching strategy. The second is a classical cloud-based CDN implemented by the original OLSR. Through extensive simulation experiments, we have shown that our Fog-based CDN architecture outperforms the other compared architectures. CA-OLSR achieves the highest packet delivery ratio (PDR) and the lowest delay for all simulated numbers of connected users. Furthermore, the MPC caching strategy shows higher cache hit rates with fewer numbers of caching operations compared to the existing default caching strategy, which caches all the pass-by content.
Funder
King Abdulaziz City for Science and Technology
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献