Intensity Loss of ZnO Coated on Fiber Optic

Author:

Mohd Arif Noor Azie Azura1ORCID,Shaari Sahbudin2,Ehsan Abang Annuar2ORCID

Affiliation:

1. Centre for Pre-Universiti Studies, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

2. Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43000 Bangi, Selangor, Malaysia

Abstract

Macrobends are optical fiber structures suitable for detecting motion changes. This structure has been developed using single-mode fibers and a combination of single-mode and multimode fibers called hetero-core. In this study, a new macrobending structure was designed and developed by adding a nano-ZnO element to the fiber optic core based on Revolution 4.0. The addition of nanomaterial elements involves an etching process that uses harmful chemicals or high-cost laser technology. Therefore, hetero-core was applied in this study to replace the etching process. The ZnO-coated fiber optics with 10 (ZnO1), 20 (ZnO2), and 30 (ZnO3) times of dip coating were developed using the dip-coating method and characterized using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Sensitivity measurement was conducted with glued optical fiber in the form of bending using a tape with a bending dimension of 2.5 cm × 1.5 cm and a wavelength of 1,550 nm. Morphological characterization using SEM proves that nanoparticles are attached to the optical fiber, and the EDX characterization confirms that the nanoparticles are ZnO elements. Optical fiber sensor sensitivity using core sizes 9, 50–9–50, 50–9–50 (ZnO1), 50–9–50 (ZnO2), and 50–9–50 (ZnO3) achieved sensitivity values of 0.91, 1.61, 2.98, 3.34, and 3.51, respectively. This study successfully produced ZnO-coated optical fiber sensors with a hetero-core structure without performing the etching process and successfully increased the sensitivity of the sensors.

Funder

Ministry of Higher Education, Malaysia

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3