Synthesis and Biomedical Applications of Zirconium Nanoparticles: Advanced Leaps and Bounds in the Recent Past

Author:

Arshad Hafiz Muhammad1,Shahzad Amir1,Shahid Sammia1,Ali Sadaqat2,Rauf Abdul1,Sharif Shahzad3,Ullah Muhammad Ehsan4,Ullah Muhammad Inam5,Ali Muhammad6,Ahmad Hafiz Ishfaq7ORCID

Affiliation:

1. Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan

2. Department of Zoology, Ghazi University, D G Khan, Pakistan

3. Department of Chemistry, Government College University, Lahore, Pakistan

4. Department of Physics, School of Science, University of Management and Technology, Lahore, Pakistan

5. Department of Chemistry, Government College University, Faisalabad, Pakistan

6. Department of Chemistry, University of Education, Lahore, Sub-Campus, D G Khan, Pakistan

7. Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan

Abstract

Many synthetic routes manufacture zirconium nanoparticles in metal oxide, nitride, and other combination forms. Coupled with other variables such as concentration, pH, and form of precursor used, the various synthetic methods support synthesizing the zirconium metal oxide nanoparticles with changed features. Various synthetic methods were studied, such as sol-gel, hydrothermal, laser ablation, and precipitation. All have different synthetic routes, different precursors and solvents were sued, and the product was characterized by SEM, TEM, photo luminance spectroscopy, UV-absorption spectroscopy, and powder X-ray diffraction. X-ray diffraction determined the crystal structure by identifying the crystal shape, arrangement of atoms, and spacing between them. SEM and TEM studied the particle size and morphology of nanoparticles. UV-visible absorption spectroscopy and PL spectroscopy were used for the determination of optical properties of nanoparticles. Zirconium oxide nanoparticles have many applications in the medical field. The review study primarily focuses on the efficient combination of zirconium dioxide with other additive materials and functionalization techniques used to improve the material’s properties, assisting the use of the material in hip arthroplasty and bone tissue applications. The development of sophisticated near-infrared (NIR) absorbing small molecules for useful phototheranostic applications was discussed in this paper.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3