Continuous Remote Monitoring in Hazardous Sites Using Sensor Technologies

Author:

Manes Gianfranco1,Collodi Giovanni1,Fusco Rosanna2,Gelpi Leonardo2,Manes Antonio3

Affiliation:

1. University of Florence and The MIDRA Consortium, 50139 Florence, Italy

2. Health, Safety, Environment and Quality Department, Eni S.p.A., 00144 Rome, Italy

3. Netsens s.r.l, Sesto Fiorentino, 50019 Florence, Italy

Abstract

The deployment of a distributed point source monitoring system based on wireless sensor networks in an industrial site where dangerous substances are produced, used, and stored is described. Seven essential features, fundamental prerequisites for our estimating emissions method, were identified. The system, consisting of a wireless sensor network (WSN) using photoionisation detectors (PIDs), continuously monitors the volatile organic compound (VOC) concentration at a petrochemical plant on an unprecedented time/space scale. Internet connectivity is provided via TCP/IP over GPRS gateways in real time at a one-minute sampling rate, thus providing plant management and, if necessary, environmental authorities with an unprecedented tool for immediate warning in case critical events happen. The platform is organised into subnetworks, each including a gateway unit wirelessly connected to the WSN nodes. Environmental and process data are forwarded to a remote server and made available to authorized users through a rich user interface that provides data rendering in various formats, in addition to worldwide access to data. Furthermore, this system consists of an easily deployable stand-alone infrastructure with a high degree of scalability and reconfigurability, as well as minimal intrusiveness or obtrusiveness.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3