Metabonomic-Transcriptome Integration Analysis on Osteoarthritis and Rheumatoid Arthritis

Author:

Gao Ningyang1ORCID,Ding Li2,Pang Jian2,Zheng Yuxin1,Cao Yuelong2ORCID,Zhan Hongsheng1,Shi Yinyu1

Affiliation:

1. Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of TCM, No. 528 Zhangheng Road, Shanghai 201203, China

2. Institute of Traumatology & Orthopedics, Shanghai Academy of TCM, No. 528 Zhangheng Road, Shanghai 201203, China

Abstract

Purpose. This study is aimed at exploring the potential metabolite/gene biomarkers, as well as the differences between the molecular mechanisms, of osteoarthritis (OA) and rheumatoid arthritis (RA).Methods. Transcriptome dataset GSE100786 was downloaded to explore the differentially expressed genes (DEGs) between OA samples and RA samples. Meanwhile, metabolomic dataset MTBLS564 was downloaded and preprocessed to obtain metabolites. Then, the principal component analysis (PCA) and linear models were used to reveal DEG-metabolite relations. Finally, metabolic pathway enrichment analysis was performed to investigate the differences between the molecular mechanisms of OA and RA.Results. A total of 976 DEGs and 171 metabolites were explored between OA samples and RA samples. The PCA and linear module analysis investigated 186 DEG-metabolite interactions including Glycogenin 1- (GYG1-) asparagine_54, hedgehog acyltransferase- (HHAT-) glucose_70, and TNF receptor-associated factor 3- (TRAF3-) acetoacetate_35. Finally, the KEGG pathway analysis showed that these metabolites were mainly enriched in pathways like gap junction, phagosome, NF-kappa B, and IL-17 pathway.Conclusions. Genes such as HHAT, GYG1, and TRAF3, as well as metabolites including glucose, asparagine, and acetoacetate, might be implicated in the pathogenesis of OA and RA. Metabolites like ethanol and tyrosine might participate differentially in OA and RA progression via the gap junction pathway and phagosome pathway, respectively. TRAF3-acetoacetate interaction may be involved in regulating inflammation in OA and RA by the NF-kappa B and IL-17 pathway.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Pharmaceutical Science,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3