Empirical Study of Large-Scale HLA Simulation of Parallel Region-Matching Knowledge Recognition Algorithm Based on Region Matching

Author:

Zhu Guohua1ORCID,Wang Haizhou1

Affiliation:

1. School of Artificial Intelligence, Jianghan University, Wuhan 430056, Hubei, China

Abstract

Most of the existing region-matching algorithms need to match all regions, resulting in a waste of computing resources, increasing the cost of simulation technology and data redundancy, and resulting in the reduction of network data stream transmission efficiency. This paper presents a parallel region-matching knowledge recognition algorithm. Combined with the shortcomings of existing matching algorithms, a simulation technology is constructed to realize the parallel matching of multiple regions in HLA distributed simulation. The algorithm can realize the parallel matching calculation of multiple changed regions in one simulation. At the same time, the basic idea based on mobile intersection is adopted in the matching calculation, and the historical information before and after the region range is moved is used. The matching is limited to the moving interval, and the moving crossover theory is applied to the matching calculation to realize the relevant historical information before and after the region. Simulation results show that the parallel region-matching knowledge recognition algorithm can support HLA distributed simulation evaluation. In the matching calculation, the basic idea based on moving intersection is adopted, and the matching is limited to the moving interval by using the historical information before and after the region is moved, which reduces a large number of irrelevant calculations. Theoretical analysis and experimental results show that the algorithm is particularly suitable for the application needs of building large-scale distributed simulation based on multi-core computing platform.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3