Affiliation:
1. Department of Mathematics, Harbin University, Harbin, Heilongjiang 150001, China
Abstract
Cervical cancer is one of the main causes of cancer death all over the world. Most diseases such as cervical epithelial atypical hyperplasia and invasive cervical cancer are closely related to the continuous infection of high-risk types of human papillomavirus. Therefore, the high-risk types of human papillomavirus are the key to the prevention and treatment of cervical cancer. With the accumulation of high-throughput and clinical data, the use of systematic and quantitative methods for mathematical modeling and computational prediction has become more and more important. This paper summarizes the mathematical models and prediction methods of the risk types of human papillomavirus, especially around the key steps such as feature extraction, feature selection, and prediction algorithms. We summarized and discussed the advantages and disadvantages of existing algorithms, which provides a theoretical basis for follow-up research.
Funder
Natural Science Foundation of Heilongjiang Province
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献