HMGB1 Upregulates RAGE to Trigger the Expression of Inflammatory Factors in the Lung Tissue in a Hypoxic Pulmonary Hypertension Rat Model

Author:

Li Wen-Juan1,Wen Zhi-Peng2,Xing Yan1,Yang Jing-Ping1,Xu Xi-Yuan1,Wang Hong-Yan1,Zhu Wen-Yan1,Li Yue-Hua1ORCID

Affiliation:

1. Departments of Respiratory & Critical Medicine, Inner Mongolia Baogang Hospital, Baotou, 014010 Inner Mongolia, China

2. Departments of Urology, Inner Mongolia Baogang Hospital, Baotou, 014010 Inner Mongolia, China

Abstract

Hypoxic pulmonary hypertension (HPH), a form of pulmonary hypertension (PH) caused by hypoxia, could cause serious complications and has a high mortality rate, and no clinically effective treatments are currently available. In this study, we established an HPH preclinical model in rats by simulating clinicopathological indicators of the disease. Our results showed that high mobility group box-1 protein (HMGB1) aggravated the clinical symptoms of HPH. We aimed at establishing protocols and ideas for the clinical treatment of HPH by identifying downstream HMGB1 binding receptors. Our investigation showed that continuous hypoxia could cause significant lung injury in rats. ELISA and western blotting experiments revealed that HPH induces inflammation in the lung tissue and increases the expression of a hypoxia-inducible factor. Testing of lung tissue proteins in vivo and in human pulmonary artery endothelial cells in vitro revealed that the HMGB1-mediated increase in the receptor for advanced glycation end products (RAGE) expression promoted inflammation. In summary, we successfully established an HPH rat model providing a new model for preclinical HPH research and elucidated the role of HMGB1 in HPH. Furthermore, we describe that HMGB1 induced inflammation in the HPH model via RAGE, causing severe lung dysfunction. This study could potentially provide novel ideas and methods for the clinical treatment of HPH.

Funder

Natural Science Foundation of Inner Mongolia

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3