Modeling and Estimation of CO2 Emissions in China Based on Artificial Intelligence

Author:

Wang Pan1ORCID,Zhong Yangyang234ORCID,Yao Zhenan5ORCID

Affiliation:

1. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, China

2. School of Information Engineering, East China University of Technology, Nanchang, Jiangxi 330013, China

3. Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, East China University of Technology, Nanchang 330013, Jiangxi, China

4. State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS), Nanjing, Jiangsu 210008, China

5. Engineering Research Center for Seismic Disaster Prevention and Engineering Geological Disaster Detection of Jiangxi Province (East China University of Technology), Nanchang, Jiangxi 330013, China

Abstract

Since China’s reform and opening up, the social economy has achieved rapid development, followed by a sharp increase in carbon dioxide (CO2) emissions. Therefore, at the 75th United Nations General Assembly, China proposed to achieve carbon peaking by 2030 and carbon neutrality by 2060. The research work on advance forecasting of CO2 emissions is essential to achieve the above-mentioned carbon peaking and carbon neutrality goals in China. In order to achieve accurate prediction of CO2 emissions, this study establishes a hybrid intelligent algorithm model suitable for CO2 emissions prediction based on China’s CO2 emissions and related socioeconomic indicator data from 1971 to 2017. The hyperparameters of Least Squares Support Vector Regression (LSSVR) are optimized by the Adaptive Artificial Bee Colony (AABC) algorithm to build a high-performance hybrid intelligence model. The research results show that the hybrid intelligent algorithm model designed in this paper has stronger robustness and accuracy with relative error almost within ±5% in the advance prediction of CO2 emissions. The modeling scheme proposed in this study can not only provide strong support for the Chinese government and industry departments to formulate policies related to the carbon peaking and carbon neutrality goals, but also can be extended to the research of other socioeconomic-related issues.

Funder

East China University of Science and Technology

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3