Explanting Is anEx VivoModel of Renal Epithelial-Mesenchymal Transition

Author:

Winbanks Catherine E.12,Darby Ian A.2,Kelynack Kristen J.1,Pouniotis Dodie2,Becker Gavin J.13,Hewitson Tim D.13

Affiliation:

1. Department of Nephrology, The Royal Melbourne Hospital, Melbourne, VIC 3050, Australia

2. School of Medical Sciences, RMIT University, Melbourne, VIC 3083, Australia

3. Department of Medicine, The University of Melbourne, Melbourne, VIC 3010, Australia

Abstract

Recognised by theirde novoexpression of alpha-smooth muscle actin (SMA), recruitment of myofibroblasts is key to the pathogenesis of fibrosis in chronic kidney disease. Increasingly, we realise that epithelial-mesenchymal transition (EMT) may be an important source of these cells. In this study we describe a novel model of renal EMT. Rat kidney explants were finely diced on gelatin-coated Petri dishes and cultured in serum-supplemented media. Morphology and immunocytochemistry were used to identify mesenchymal (vimentin+, α-smooth muscle actin (SMA)+, desmin+), epithelial (cytokeratin+), and endothelial (RECA+) cells at various time points. Cell outgrowths were all epithelial in origin (cytokeratin+) at day 3. By day 10, 50 ± 12% (mean ± SE) of cytokeratin+ cells double-labelled for SMA, indicating EMT. Lectin staining established a proximal tubule origin. By day 17, cultures consisted only of myofibroblasts (SMA+/cytokeratin−). Explanting is a reproducibleex vivomodel of EMT. The ability to modify this change in phenotype provides a useful tool to study the regulation and mechanisms of renal tubulointerstitial fibrosis.

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Genetics,Molecular Biology,Molecular Medicine,General Medicine,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3