Affiliation:
1. National Engineering Laboratory for Pipeline Safety, Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum, Beijing 102249, China
Abstract
When the conservative governing equation of incompressible fluid flow and heat transfer is discretized by the finite volume method, there are various schemes to deal with the convective term. In this paper, studies on the convective term discretized by two different schemes, named strong and weak conservation schemes, respectively, are presented in detail. With weak conservation scheme, the convective flux at interface is obtained by respective interpolation and subsequent product of primitive variables. With strong conservation scheme, the convective flux is treated as single physical variable for interpolation. The numerical results of two convection heat transfer cases indicate that under the same computation conditions, discretizing the convective term by strong conservation scheme would not only obtain a more accurate solution, but also guarantee the stability of computation and the clear physical meaning of the solution. Especially in the computation regions with sharp gradients, the advantages of strong conservation scheme become more apparent.
Funder
National Natural Science Foundation of China