Synthesis, Characterization, and Antibacterial Evaluation of Heteroleptic Oxytetracycline-Salicylaldehyde Complexes

Author:

Dev Rohit Kumar1ORCID,Mishra Parashuram1ORCID,Kumar Chaudhary Narendra12ORCID,Bhattarai Ajaya2ORCID

Affiliation:

1. Bio-inorganic and Materials Chemistry Research Laboratory, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar, Nepal

2. Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar, Nepal

Abstract

A new series of mixed ligand complexes of Cd(II) and Mo(V) were successfully synthesized by refluxing the mixture solution of oxytetracycline hydrochloride (OTC.HCl) with an aqueous and alcoholic solution of metal (M = Cd(II) and Mo(V)) salts and an alcoholic solution of salicylaldehyde (Sal). The complexes were characterized by modern analytical and spectral methods such as elemental microanalysis, pH, conductivity, surface tension, viscosity, melting point, and spectral methods such as FT-IR, NMR, electronic absorption, SEM, and mass spectrometry. Conductivity measurements of the complexes revealed their electrolytic nature. The kinetic and thermal stabilities were investigated using thermogravimetric and differential thermal analysis techniques. Thermodynamic and kinetic parameters such as E, ΔH, ΔS, and ΔG were calculated from TG curves using the Coats–Redfern method. Geometry optimization of the proposed structure of the complexes was achieved by running MM2 calculations in a Gaussian-supported CS ChemOffice 3D Pro.12.0 version software. The final optimized geometrical energies for respective Cd-OTC/Sal and Mo-OTC/Sal complexes were found to be 923.1740 and 899.3184 kcal/mol. The electronic absorption spectral study revealed a tetrahedral geometry for the Cd-OTC/Sal complex and octahedral geometry for the Mo-OTC/Sal complex. The antibacterial sensitivity of the complexes was evaluated against three bacterial pathogens such as S. aureus, E. coli, and P. mirabilis using the modified Kirby–Bauer paper disc diffusion method. The antibacterial study revealed significant growth inhibitory action of the complexes.

Funder

Nepal Academy of Science and Technology

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3