Synthesis of Cationic Waterborne Polyurethanes from Waste Frying Oil as Antibacterial Film Coatings

Author:

Phunphoem Sivaphol1,Saravari Onusa1,Supaphol Pitt2ORCID

Affiliation:

1. Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

2. The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand

Abstract

Cationic waterborne polyurethane (CWPU) was synthesized from waste frying oil and utilized as antibacterial film coatings. Waste oil-based monoglyceride was synthesized by the alcoholysis reaction of waste oil with glycerol, while CWPUs were prepared by esterification with methylenediphenyl 4,4-diisocyanate (MDI) and bis(2-hydroxyethyl)dimethyl ammonium chloride (BHMAC) as an internal emulsifier. The effect of internal emulsifier contents on the chemical structures and properties of the obtained polyurethanes was studied. Bactericidal activity of the obtained polyurethanes toward Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was investigated using the time kill assay. CWPUs were successfully synthesized as confirmed by proton nuclear magnetic resonance spectroscopy (1H-NMR) and Fourier transform infrared spectroscopy (FT-IR). Effects of the internal emulsifier on particle size of CWPUs and mechanical properties of the resulting polyurethane films were investigated and measured by transmission electron microscopy (TEM). Particle size diameter of CWPUs ranged from 13.38 to 28.75 nm. The resulting polyurethane films were very pliable, with moderate adhesion and hardness. All films showed good resistance to water and diluted acid but poor resistance to dilute alkali. Obtained CWPUs provided excellent antibacterial activity, with efficiency increasing with increasing amount of BHMAC. Interestingly, antibacterial ability against S. aureus was more rapid than that against E. coli under similar conditions. Results offered an alternative utilization of waste frying oil as a sustainable raw material for the preparation of value-added polymers in the chemical industry.

Funder

Chulalongkorn University

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3