Dynamic Adjustment Optimisation Algorithm in 3D Directional Sensor Networks Based on Spherical Sector Coverage Models

Author:

Dang Xiaochao12ORCID,Shao Chenguang1ORCID,Hao Zhanjun12ORCID

Affiliation:

1. College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China

2. Gansu Province Internet of Things Engineering Research Center, Lanzhou 730070, China

Abstract

In directional sensor networks research, target event detection is currently an active research area, with applications in underwater target monitoring, forest fire warnings, border areas, and other important activities. Previous studies have often discussed target coverage in two-dimensional sensor networks, but these studies cannot be extensively applied to three-dimensional networks. Additionally, most of the previous target coverage detection models are based on a circular or omnidirectional sensing model. More importantly, if the directional sensor network does not design a better coverage algorithm in the coverage-monitoring process, its nodes’ energy consumption will increase and the network lifetime will be significantly shortened. With the objective of addressing three-dimensional target coverage in applications, this study proposes a dynamic adjustment optimisation algorithm for three-dimensional directional sensor networks based on a spherical sector coverage model, which improves the lifetime and coverage ratio of the network. First, we redefine the directional nodes’ sensing model and use the three-dimensional Voronoi method to divide the regions where the nodes are located. Then, we introduce a correlation force between the target and the sensor node to optimise the algorithm’s coverage mechanism, so that the sensor node can accurately move to the specified position for target coverage. Finally, by verifying the feasibility and accuracy of the proposed algorithm, the simulation experiments demonstrate that the proposed algorithm can effectively improve the network coverage and node utilisation.

Funder

Key Science and Technology Support Program of Gansu Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3