Effects of Annealing Environments on the Solution-Grown, Aligned Aluminium-Doped Zinc Oxide Nanorod-Array-Based Ultraviolet Photoconductive Sensor

Author:

Mamat Mohamad Hafiz1,Che Khalin Mohd Izzudin1,Nik Mohammad Nik Noor Hafizah2,Khusaimi Zuraida2,Md Sin Nor Diyana1,Shariffudin Shafinaz Sobihana1,Mohamed Zahidi Musa1,Mahmood Mohamad Rusop12

Affiliation:

1. NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia

2. NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia

Abstract

We have fabricated metal-semiconductor-metal- (MSM-) type ultraviolet (UV) photoconductive sensors using aluminium- (Al-) doped zinc oxide (ZnO) nanorod arrays that were annealed in different environments: air, oxygen, or a vacuum. The Al-doped ZnO nanorods had an average diameter of 60 nm with a thickness of approximately 600 nm that included the seed layer (with thickness~200 nm). Our results show that the vacuum-annealed nanorod-array-based UV photoconductive sensor has the highest photocurrent value of2.43×10-4 A. The high photocurrent is due to the high concentration of zinc (Zn) interstitials in the vacuum-annealed nanorod arrays. In contrast, the oxygen-annealing process applied to the Al-doped ZnO nanorod arrays produced highly sensitive UV photoconductive sensors, in which the sensitivity reached 55.6, due to the surface properties of the oxygen-annealed nanorods, which have a higher affinity for oxygen adsorption than the other samples and were thereby capable of reducing the sensor’s dark current. In addition, the sensor fabricated using the oxygen-annealed nanorod arrays had the lowest rise and decay time constants. Our result shows that the annealing environment greatly affects the surface condition and properties of the Al-doped ZnO nanorod arrays, which influences the performance of the UV photoconductive sensors.

Funder

Universiti Teknologi MARA

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3