Effect of Alloying Composition on Microstructure and Mechanical Properties of Ultranarrow Gap Welded Joints of U71Mn Rail Steel

Author:

Gong Lian1ORCID,Liu Hui1,Lv Cheng1,Zhao Lijun1

Affiliation:

1. School of Intelligent Manufacturing Engineering, Chongqing University of Arts and Science, Chongqing 402160, China

Abstract

A new welding method, ultranarrow gap welding with constrained arc by flux band, is proposed to compensate for the low quality of rail thermite welded joints. This article presents the results of research on the microstructure and mechanical properties of ultranarrow gap welded joints of U71Mn rail steel made using three types of alloying composition content flux bands. Results indicated that the base metal metallographic microstructure consisted mainly of pearlitic, the HAZ was mainly composed of fine pearlite, and the microstructure of the welded bead was composed of acicular ferrite, while the weld grain size decreased as the alloy composition increased. The average hardness noticeably changed in weld metal as the alloy composition increased, and when the alloy composition reached 19%, the hardness was equivalent to the base material. The average hardness value of the HAZ (35.8 HRC) was higher than that of the base metal (24.8 HRC). The tensile strength increased, and the percentage elongation after fracture decreased with increasing alloying composition from 9% to 19%. The impact absorbing energies were decreased as the alloying composition increased. Consequently, all the mechanical properties of rail ultranarrow gap welding were higher than those of the standard requirements of the rail flash welding. And the optimal alloying composition of flux band was 19%.

Funder

Natural Science Foundation of Chongqing

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Reference27 articles.

1. Numerical study on the ratcheting performance of rail flash butt welds in heavy haul operations

2. Rail degradation due to thermite weld discontinuities: Field experience

3. The influence of technological parameters on the thermal cycle at butt flash welding of rails;N. N. Voronin;Welding International,2021

4. Fracture analysis of U71Mn rail flash-butt welding joint;X. Yu;Case Studies in Engineering Failure Analysis,2015

5. Investigation of welding residual stress in flash-butt joint of U71Mn rail steel by numerical simulation and experiment;N. Ma;Materials & Design,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3