Role of Vascular Endothelial Cells in Disseminated Intravascular Coagulation Induced by Seawater Immersion in a Rat Trauma Model

Author:

Zhang Dajin1,Qu Jia1,Xiong Ming1,Qiao Yuanyuan1,Wang Dapeng1,Liu Fengjiao1,Li Dandan1,Hu Ming1,Zhang Jiashu2,Wang Fuyu2ORCID,Zhao Xiaohang1ORCID,Shi Chenghe1ORCID

Affiliation:

1. Center for Basic Medical Sciences, Navy General Hospital of Chinese PLA, Beijing 100048, China

2. Department of Neurosurgery, PLA 301 Hospital, Beijing 100853, China

Abstract

Trauma complicated by seawater immersion is a complex pathophysiological process with higher mortality than trauma occurring on land. This study investigated the role of vascular endothelial cells (VECs) in trauma development in a seawater environment. An open abdominal injury rat model was used. The rat core temperatures in the seawater (SW, 22°C) group and normal sodium (NS, 22°C) group declined equivalently. No rats died within 12 hours in the control and NS groups. However, the median lethal time of the rats in the SW group was only 260 minutes. Among the 84 genes involved in rat VEC biology, the genes exhibiting the high expression changes (84.62%, 11/13) on a qPCR array were associated with thrombin activity. The plasma activated partial thromboplastin time and fibrinogen and vWF levels decreased, whereas the prothrombin time and TFPI levels increased, indicating intrinsic and extrinsic coagulation pathway activation and inhibition, respectively. The plasma plasminogen, FDP, and D-dimer levels were elevated after 2 hours, and those of uPA, tPA, and PAI-1 exhibited marked changes, indicating disseminated intravascular coagulation (DIC). Additionally, multiorgan haemorrhagia was observed. It indicated that seawater immersion during trauma may increase DIC, elevating mortality. VECs injury might play an essential role in this process.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3