Acoustic Emission Characteristics and Damage Evolution of Sandstone with Different Pores under External Load

Author:

Wang Wencai1,Li Junpeng12ORCID,Wang Chuangye1ORCID,Pei Zhenyu2ORCID

Affiliation:

1. School of Mining and Coal, Inner Mongolia University of Science & Technology, Baotou 014010, China

2. School of Energy Industry, Shanxi College of Technology, Shuozhou 036000, China

Abstract

The rock will be damaged and destroyed when the external load reaches the bearing limit, which will be accompanied by complex AE signals and damage evolution laws. Therefore, in order to obtain the relationship between AE signal and damage evolution characteristics of rocks, 4 kinds of sandstones of a mine are used for AE test. Firstly, the porosity of 4 kinds of sandstone is tested. Secondly, the AE signal parameter characteristics of sandstone with different porosity are analyzed. Finally, the AE parameters obtained are combined with cellular automata and damage theory to analyze the damage evolution law and critical damage value of different sandstones. The results show that the pore size of the four sandstones is QSYX > QSYZ > FSYX > FSYZ. The loading process is divided into compaction stage, elastic deformation stage, and plastic deformation stage, with peak strengths of 46.92 MPa, 43.32 MPa, 57.87 MPa, and 54.31 MPa, respectively. Or the AE event rate, the missing area, missing parts and missing number are different. The QSYX missing area is larger than QSYZ and FSYZ; the macrocrack growth speed is also faster; and the signs of fracture are obvious. The number of FSYX missing is more than QSYX, QSYZ, and FSYZ. The first two missing parts are caused by internal defects; the last two missing parts are signs of fracture; QSYX, QSYZ, and FSYZ are shear failure, and FSYX is tensile failure. The damage evolution process of the four sandstones corresponds to the loading process one by one. The calm stage of damage corresponds to the compaction stage, the damage expansion stage corresponds to the elastic deformation stage, and the damage acceleration stage corresponds to the plastic deformation stage. The critical damage values are 0.438, 0.499, 0.576, and 0.476, respectively, which are higher than the critical damage values of the sandstone cell model of 0.43, indicating that when the damage values reach the critical value, instability exists and instability failure will occur with continuous load.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3