Affiliation:
1. The College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
2. The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Qinhuangdao 066004, China
3. State Key Laboratory of Software Engineering of Hebei Province, Qinhuangdao, Hebei 066004, China
4. College of Software, Liaoning Technical University, Huludao, 125005, China
Abstract
With the widespread use of medical images in telemedicine, personal information may be leaked. The traditional zero-watermarking technology has poor robustness under large-scale attacks. At the same time, most of the zero-watermarking information generated is a binary sequence with a single information structure. In order to effectively solve the poor robustness problem of traditional zero-watermarking under large-scale attacks, a color zero-watermarking algorithm for medical images based on bidimensional empirical mode decomposition (BEMD)-Schur decomposition and color visual cryptography is proposed. Firstly, the color carrier image and the color copyright logo are decomposed into R, G, and B three color components, respectively, and the feature value of each sub-block are extracted by wavelet transform, BEMD decomposition, block operation, and Schur decomposition. Then, the R, G, and B components of the copyright logo are scrambled by Arnold scramble and converted into binary watermark information. Finally, a color visual cryptography scheme is proposed to generate two color shared images based on the carrier characteristics and copyright information. One shared image is used to generate a color zero-watermark, and the other is used for copyright authentication phase. Experimental results show that this algorithm has strong robustness and stability in resisting large-scale noise attacks, filtering attacks, JPEG compression, cropping attacks, and translation attacks at different positions. Compared with similar zero-watermarking algorithms, the robust performance is improved by about 10%, and it can adapt to more complex network environments.
Subject
Computer Networks and Communications,Information Systems
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献