Affiliation:
1. School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui, China
Abstract
Radial clearance, particularly the axial clearance in the 3D joint of a mechanism owing to the assemblage, manufacturing tolerances, wear, and other conditions, has become a research focus in the field of multibody dynamics in recent years. In this study, a hydraulic cylinder model with 3D clearance joints was constructed by combining various potential contact scenarios. The novelty of this study is that potential contact points between the bearing wall and journal were calculated when the bearing wall circle was projected to an ellipse owing to misalignment of axes. Moreover, the simulation model considered the effective bulk modulus of the hydraulic oil and applied the Lagrange multiplier method. Subsequently, an experiment was conducted to verify the simulation results. The simulation and experimental results indicated that the dynamic responses of the hydraulic cylinder with 3D clearance joints can be classified as free, rebound, slide, and contact. The effects of input force, frequency, and clearance size on the dynamic behavior of the hydraulic cylinder were also investigated. Increasing the input force and clearance size will degrade the hydraulic cylinder dynamic response; however, the input force frequency can reduce the deterioration of the dynamic response. This study aids in providing improved understanding of the hydraulic cylinder with 3D clearances in the theoretical field and for practical engineering applications.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献