Parameters Affecting the Transient Response of an Impacting Beam

Author:

Xu Weiping1,Ervin Elizabeth K.2

Affiliation:

1. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, School of Civil Engineering, Southwest Jiaotong University, Chengdu, SiChuan, China

2. Civil Engineering, The University of Mississippi, Oxford, MS, USA

Abstract

Impact causes shock waves that may be unexpected and damaging. A computationally efficient impact model with a generic beam which is discrete in time and continuous in space was undertaken; an Euler-Bernoulli beam with adjustable boundary conditions and variable contact location is numerically studied under a pulse loading. Experiments on a cantilever beam were carried out to verify the effects of influential parameters. A half-sine pulse excitation was applied through a mechanical shaker, and the deflection was captured by a high speed camera. Numerous test cases were conducted that varied pulse duration, pulse amplitude, and clearance. Decreasing the pulse duration lowers all deflection amplitudes, but the time in contact is insensitive. No gap causes minimal beam response, and increasing gap generates greater deflection. Representative test cases were selected for validating the theoretical model. When comparing numerical simulation with experimental results, satisfactory agreement for amplitude and duration can be reached even with raw input parameters. The contribution of this study is the incorporation of unique pulse loading, changeable boundary conditions, adjustable contact/impact situations, comprehensive parameter studies, and high speed photography.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3